CERTAIN EXACT SOLUTIONS TO STEADY-STATE

PROBLEMS IN THE THEORY OF HEAT CONDUCTION
APPLIED TO INHOMOGENEOUS BODIES
G. A. Dombrovskii and R. B. Nudel'man

UDC 536.2.01

A method is shown of constructing exact analytical solutions to steady-state problems in the theory of heat conduction where the thermal conductivity is a special kind of function of the space coordinates.

We consider the equation

$$
\begin{equation*}
\operatorname{div}(\lambda \operatorname{grad} T)=-f \tag{1}
\end{equation*}
$$

In place of $T(x, y, z)$ we will introduce a new unknown function $u(x, y, z)$ based on the transformation

$$
\begin{equation*}
u=V^{\prime}\left(T-T_{0}\right), T_{0}=\text { const. } \tag{2}
\end{equation*}
$$

For this function we have the equation

$$
\begin{equation*}
\Delta u-M u=-\frac{f}{\sqrt{\lambda}} \tag{3}
\end{equation*}
$$

whose coefficient $M(x, y, z)$ is determined from a given function $\lambda(x, y, z)$ according to the equation

$$
\begin{equation*}
\Delta \sqrt{\lambda}-M \sqrt{\lambda}=0 \tag{4}
\end{equation*}
$$

We propose to select function $M(x, y, z)$ so as to convert Eq. (3) into any well known equation of mathematical physics. Functions $\lambda(x, y, z)$ which characterize the inhomogeneity of bodies cannot be arbitrary here, but they must belong to a certain class defined by Eq. (4).

We will consider only the simplest cases: $M \equiv 0$ and $M \equiv c$ ($c=$ const).

1. $M \cong 0$. For this case we have equations

$$
\begin{array}{r}
\Delta u=-\frac{f}{\sqrt{\bar{\lambda}}}, \\
\Delta \sqrt{\bar{\lambda}}=0 . \tag{6}
\end{array}
$$

If $\sqrt{\lambda(x, y, z)}$ is a harmonic function, therefore, then the steady-state problems in the theory of heat conduction reduce to boundary-value problems for either the Poisson equation or, when $f=0$, the Laplace equation.

Example. To determine the steady-state temperature distribution in an infinitely long beam whose rectangular cross section is defined by segments of the four straight lines $\mathrm{x}=0, \mathrm{x}=a, \mathrm{y}=0, \mathrm{y}=\mathrm{b}$ under the following conditions: three sides of the beam are at temperature T_{0}, while a given temperature distribution $T(x, b)=F(x)$ is maintained on the fourth side, and there are no heat sources ($f=0)$; λ is a function of coordinates x, y on a beam cross section and $\sqrt{\lambda(x, y)}$ is a harmonic function.

It is easy to determine function $u(x, y)$ by the Fourier method. Then, according to (2), we obtain a solution to the problem in the form

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 23, No. 3, pp. 554-556, September, 1972. Original article submitted May 20, 1971.

```
01974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A
copy of this article is available from the publisher for $15.00.
```

$$
\begin{equation*}
T(x, y)=T_{0}+\frac{1}{\sqrt{\lambda(x, y)}} \sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{a} \operatorname{sh} \frac{n \pi y}{a} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{n}=\frac{2}{a \operatorname{sh}(n \pi b / a)} \int_{0}^{a} \sqrt{\lambda(\xi, b)}\left[F(\xi)-T_{n}\right] \sin \frac{n \pi \xi}{a} d \xi . \tag{8}
\end{equation*}
$$

2. $M \equiv c, c=$ const. Equations (3) and (4) yield

$$
\begin{array}{r}
\Delta u-c u=-\frac{f}{\sqrt{\lambda}} \\
\Delta V \bar{\lambda}-c \sqrt{\bar{\lambda}}=0 . \tag{10}
\end{array}
$$

If function $\lambda(x, y, z)$ satisfies Eq. (10), then the steady-state problems in the theory of heat conduction reduce to boundary-value problems for Eq. (9). Useful analytical solutions to boundary-value problems for Eq. (9) can in a few cases be obtained by conventional methods.

Example. To determine the steady-state temperature distribution in an infinitely long beam whose rectangular cross section is defined by segments of the four straight lines $\mathrm{x}=0, \mathrm{x}=a, \mathrm{y}=0, \mathrm{y}=\mathrm{b}$ under the following conditions: all sides are at the same temperature T_{0} and $f(x, y), \lambda(x, y)$ are known functions of the space coordinates in a beam cross section, where function $\lambda(x, y)$ satisfies Eq. (10).

The solution to the corresponding Dirichlet problem for Eq。(9) is obtained in the form of a binary trigonometric series [1]. After simple transformations and application of formula (2), this solution yields

$$
\begin{equation*}
T(x, y)=T_{0}+\frac{1}{\sqrt{\lambda(x, y)}} \int_{0}^{a} \int_{0}^{b} \frac{f(\xi, \eta)}{\sqrt{\lambda(\xi, \eta)}} G(x, y ; \xi, \eta) d \xi d \eta \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
G(x, y ; \xi, \eta)=\frac{4}{a b} \sum_{m, n=1}^{\infty} \frac{\sin (m \pi x / a) \sin (n \pi y / b) \sin (m \pi \xi / a) \sin (n \pi \eta / b)}{(m \pi / a)^{2}+(n \pi / b)^{2}+c} \tag{12}
\end{equation*}
$$

is a Green function.

NOTATION

$x, y, z \quad$ are the rectangular Cartesian coordinates;
$T(x, y, z)$ is the temperature;
$\lambda(x, y, z)$ is the thermal conductivity;
$f(x, y, z)$ is the intensity of heat sources;
$\nabla \quad$ is the Laplace operator.

LITERATURE CITED

1. L. V. Kantorovich and V. I. Krylov, Approximation Methods in Higher Analysis [in Russian], Fizmatgiz, Moscow-Leningrad (1962), Ed. 5.
